Шпаргалки для студентов

готовимся к сессии

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Шпаргалки по курсу: Актуальные проблемы биотехнологии. Часть 1


Сформулируйте понятие "Биотехнология".


Биотехнология - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом ген. инженерии.

 Современная формулировка ответа на вопрос: "Что такое жизнь?"

Жизнь - открытая система существования биополимерных соединений (белков и нукл.к/т), в самой хим. структуре которых заложены осн. свойства живого - самосохранение, самовоспроизведение и саморегуляция, кот. могут реализоваться только в условиях постоянным обм. вещ-вом и энергией с окр. средой.

 Основные молекулы живого и их хар-ка.

Основные молекулы живого. Их характеристика: Большой молекулярный вес. Полимерность. Несколько уровней структурной организации Способность восстанавливать (до известных пределов) свою утраченную под действием неблагоприятных факторов структуру (денатурация – ренатурация). Способность ДНК к самоудвоению. Белки определяют способность живого к самосохранению. ДНК – к самовоспроизведению.

Способы получения энергии живыми организмами.

Все живые организмы экосистемы по способу получения энергии делятся на автотрофов и гетеротрофов. Автотрофы способны образовывать органическое вещество, используя неорганический источник углерода и энергию света (фотоавтотрофы) или энергию окисления неорганических веществ (хемоавтотрофы). Гетеротрофы используют энергию окисления органических веществ и используют органические источники углерода.

(другой вариант): Все живые организмы не могут оставаться живыми и поддерживать высокий уровень организации без постоянного притока энергии извне. При этом они могут использовать только две формы внешней энергии — световую и химическую. Именно по способу получения энергии организмы делят на фототрофы и хемотрофы. Растения получают энергию в виде электромагнитного излучения Солнца, а животные используют энергию, заключенную в ковалентных связях органических молекул, которые поступают в организм с пищей. Полагают, что первые организмы древней Земли располагали избытком органических соединений, образующихся в ходе геохимических процессов. Они извлекали энергию, окисляя органические соединения в процессах, видимо, сходных с различными видами брожения. Эту способность сохранили клетки всех ныне живущих организмов, способные получать энергию при анаэробном распаде глюкозы в процессе Гликолиза. Однако по мере исчерпания запасов органики эволюционное развитие получили фототрофы, использующие энер­гию света в процессе Фотосинтеза И способные синтезировать углеводы из атмосферного СО2 и воды. Фотосинтез сопровождался образованием молекулярного кислорода. Насыщение атмосферы кислородом привело к возникновению и эволюционному доминированию аэробных форм жизни, которые научились получать необходимую им энергию в результате окисления углеводов кислородом в процессе Дыхания. Дальнейшая эволюция разделила живых существ на прокариоты и эукариоты, одноклеточные и многоклеточные, на растения и животные, но возникшие на ранних этапах эволюции механизмы использования клеткой энергии остались в своей основе неизменными. При всем разнообразии живых существ и условий среды, в которых они обитают, для получения энергии ими используются три основных процесса — Гликолиз, Дыхание и фотосинтез. При этом, несмотря на все различия в метаболизме растений, животных и бактерий, способы преобразования внешней энергии, будь то энергия света или энергия субстратов дыхания, в клеточные формы энергии базируются на общих фундаментальных принципах и подчиняются общим законам. Основой этих законов является прежде всего то, что все процессы в живой клетке подчиняются законам физики и химии и могут быть описаны с позиций термодинамики.