Шпаргалки для студентов

готовимся к сессии

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Шпаргалки по микробиологии. Часть 1 - Биосинтез аминокислот

Индекс материала
Шпаргалки по микробиологии. Часть 1
Классификационные критерии
Определение жизнеспособных клеток
Коньюгация у бактерий, механизм, использование.
Определение чувствительности бактерий к антибиотикам.
Химический состав и строение клеточной стенки у бактерий
Мигрирующие элементы бактерий
Анаэробное дыхание
Взаимотношения микро и макроорганизмов.
Питательные среды в микробиологии
Пропионовокислое брожение
Плазмиды бактериальных клеток
Действие химических факторов на микроорганизмы
Актиномицеты
Чистые культуры бактерий и методы их выделения.
Биосинтез аминокислот
Брожение смешанного типа
Энергетический метаболизм. Аэробное и анаэробное дыхание.
Строение эндоспор. Спорообразование.
Методы количественного учёта микроорганизмов.
История развития микробиологии
Нуклеоид. Репликация ДНК
Цитоплазма. Производные цитоплазмы
Аэробное дыхание. Синтез АТФ
Изменчивость. Доказательство мутационной природы
Утилизация веществ микроорганизмами
Рост клеток и популяций, основные параметры роста.
Арзибактерии
Все страницы



Биосинтез аминокислот

 

clip_image012

Источником азота для аминокислот у разных групп бактерий являются нитраты, нитриты, молекулярный азот, аммиак. Перевод неорганического азота в орг. соединения происходит всегда через образование аммиака, и поэтому нитраты, нитриты, молекулярный азот предварительно восстанавливаются до аммиака и только после этого включ. в состав орг. соедин.

clip_image014clip_image016
Восстановительное аминирование кетокислот аммиаком. При взаимодействии а-кетоглутаровой кислоты с аммиаком при участии фермента глутаматдегидрогеназы образуется глутаминовая кислота:

clip_image018clip_image020
При участии фермента аланиндегидрогеназы пировиноградная кислота взаимодействует с аммиаком с образованием аланина:

clip_image022
Некотор.ак образуются путем амидирования. Из глутаминовой кислоты с участием фермента глутаминсинтетазы образуется глутамин:

clip_image024
Большинство получает аминогруппу от одной из пе- рвичных ак в результате трансаминирования, или переаминирования. Из свободных аминокислот в цитоплазме бактерий количественно преобладает глутаминовая кислота. Она служит донором аминогрупп при биосинтезе многих аминокислот. Глу взаимодействуя со щук при участии фермента аминотрансферазы, обеспечивает образование аспарагиновой кислоты. Отдав аминогруппу, глу в а-кетоглутаровую, которая выступает в качестве стартового вещества для синтеза глутаминовой кислоты.

Путь биосинтеза ароматических ак (триптофана, фенилаланина, тирозина). Как уже отмечалось, исходными веществами для их синтеза являются эритрозо-4-фосфат и фосфо-енолпируват. Молекулы этих веществ конденсируются с образованием С7-соединения, которое подвергается циклизации, образуя 5-дегидрохинат. Через ряд этапов 5-дегидрохинат превращается в хоризмовую кислоту, которая является общим промежуточным продуктом биосинтеза всех ароматических аминокислот. На этом этапе биосинтет. путь разветвляется, один путь ведет к биосинтезу триптофана через антраниловую к-ту, а другой – префеновой к-ты, кот. является предшеств. как тирозина, так и фенилаланина.

  1. Донорские и реципиентные бактерии.

clip_image026
Если стрептомицинустойчивым был штамм В, а штамм А – стрептомицинчувствительным, то на минимальной глюкозо-солевой среде со стрептомицином формировались клоны прототрофных клеток.

Штамм А: metbio thr+ leu+ thi+Str-s и Штамм B: met+ bio+ thrleuthiStr-r=

Позднее У. Хейс показал, что существуют бактерии мужского (доноры) и женского (реципиенты) типа и вклад их в конъюгацию не равнозначен. Перенос генетического материала происходит в одном направлении – от донора к реципиенту и процесс рекомбинации протекает в клетках штамма-реципиента. Рекомбинанты наследуют большинство своих признаков от реципиента, а от донора получают только отдельные фрагменты генома.

У. Хейс ввел понятие о наличии в донорных клетках F-фактора (fertility – плодовитость) и обозначил доноры F+-клетками, а реципиенты – F-клетками. Если взять F-клетки и добавить к ним F+-клетки, смесь поместить в оптимальные условия, то через несколько часов F-клетки превратятся в клетки F+. Это значит, что при контакте клеток F-фактор быстро передается из F+-клеток в F–-клетки, а частота передачи F-фактора близка к 100 %. Таким образом, клетки-реципиенты в результате конъюгации

превращаются в потенциальных доноров, но при этом хромосомные признаки не передаются или передаются с крайне низкой частотой (ниже10–5).В результате рекомбинации генов донорной хромосомы с хромосомой реципиента образовывались рекомбинанты по разным признакам. Такие донорные штаммы получили название Hfr соответственно первым буквам от английского high frequency of recombination.

От состояния F-фактора различают два типа донорных клеток:

• F+-доноры, у которых F-фактор находится в автономном от хромосомы состоянии. При скрещивании F+-доноров с F–-реципиентами передается, как правило, только F-фактор: clip_image028

• доноры Hfr-типа, у которых F-фактор интегрирован в хромосому. При скрещивании Hfr-доноров с F–-реципиентами передаются хромосомные гены с образованием рекомбинантов (F-).

F-фактор может исключаться из хромосомы, и в этом случае клетка Hfr становится F+-клеткой. Неправильная эксцизия F-фактора - с незаконной или запрещенной рекомбинацией, возникающей меж-

ду негомологичными генетическими участками полового фактора и хромосомы. В состав полового фактора включается фрагмент бактериальной хромосомы. F-факторы, содержащие фрагменты хромосомной ДНК, по-лучили название F*-факторов, а штаммы – F*-донорами.

Различают малые и большие F*-факторы. Один ген, или до половины бактериальной хромосомы.

F*-факторы, как и обычные F-факторы, с высокой эффективностью передаются при конъюгации F–-клеткам. При этом они с высокой частотой переносят в реципиентные клетки и бактериальные гены, которые включены в их состав. Такой тип передачи генов получил название сексдукции или F-дукции, что схематично можно изобразить следующим образом. clip_image030

В результате скрещивания такого типа реципиентная клетка приобретает способность к сбраживанию лактозы и несет аллель как lac+ (находится в составе F*-фактора), так и аллель lac– (в хромосоме). Клетки, в которых определенные нуклеотидные последовательности представлены в двойном наборе – в составе хромосомы и в F*-факторе, называются гетерогенотами. У них обнаружена повышенная способность к образованию Hfr-клеток. При этом интеграция F*-фактора осуществляется в об-

ласти хромосомы, гомологичной фрагменту, включенному в состав F*-фактора. В противоположность этому, F-фактор F+-клетки не имеет предпочтительного места соединения с хромосомой.

  1. Культивирование аэробных организмов.

Культивирование аэробных микроорганизмов проводят следующим образом: • на поверхности плотных сред или в тонком слое жидких сред, когда микроорганизмы получают кислород непосредственно из воздуха; • в жидких средах (глубинное культивирование). В этом случае микроорганизмы используют растворенный в среде кислород. В связи с низкой растворимостью кислорода, для обеспечения роста аэробных бактерий в толще среды, требуется постоянное аэрирование. Наиболее простой и широко распространенный в лабораторной практике способ глубинного культивирования – выращивание на шейкерах (качалках), обеспечивающих встряхивание колб или пробирок со скоростью 100–200 об/мин и более. Аэрировать кул-ру можно продуванием под давлением через толщу среды стерильного воздуха.