Шпаргалки для студентов

готовимся к сессии

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Шпаргалки по микробиологии. Часть 2 - Мембранная структура бактериальных клеток

Индекс материала
Шпаргалки по микробиологии. Часть 2
Мембранная структура бактериальных клеток
Взаимодействие микроорганизмов с высшими растениями.
Антибиотики. Природа действия
Типы микроскопии и использование.
Способы генетического обмена у бактерий.
Хемолитотрофы
Молочнокислое брожение
Получение накопительных культур.
Оперонный принцип организации генов у бактерий.
Органоиды движения. Типы движения.
Псевдомонады
Распространение в природе. Использование человеком.
Факторы физической природы.
Бактериофаги.
Бактериальная трансдукция.
Патогены высших животных
Анаэробное дыхание
Конкуренция микроорганизмов. Бактериоцины.
Формы и взаимодействия между микрорганизмами.
Явления рестрикции и модификации.
Фототрофные бактерии. Фотосинтетический аппарат.
Типы трансдукции
Спирохеты.
Биогеохимическая деятельность микроорганизмов.
Компетентность. Получение компетентных культур.
Рикеттсии и хламидии.
Все страницы




Мембранная структура бактериальных клеток. Производные мембраны.

 

Химический состав ее представлен белково-липидным комплексом, в котором на долю белков приходится 50–75 %, на долю липидов – 15–50 %. Главным липидным компонентом мембраны являются фосфолипиды. Белковая фракция цитоплазматической мембраны представлена структурными белками, обладающими ферментативной активностью.

Цитоплазматическая мембрана бактерий по химическому составу в целом сходна с мембранами эукариотических клеток, но мембраны бактерий богаче белками, содержат необычные жирные кислоты и в основном не имеют стеринов.

К строению цитоплазматической мембраны бактерий приложима жидкостно-мозаичная модель, разработанная для мембран эукариот. Согласно этой модели, мембрана состоит из бислоя липидов. Гидрофобные «концы» молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные «головки» – наружу. По расположению подразделяются на периферические и интегральные.

Периферические белки связаны с поверхностью мембраны и легко вымываются из нее при изменении ионной силы растворителя или при воздействии хелатирующими агентами. Обычно они растворяются в нейтральных буферных растворах и переходят в них без липидных компонентов. К периферическим белкам относятся НАДН2-дегидрогеназы, малатдегидрогеназы, АТФазный.

Связь интегральных белков с липидами определяется главным образом гидрофобными взаимодействиями. Эти взаимодействия настолько прочны, что белки могут быть отделены от других элементов мембраны только при обработке детергентами, органическими растворителями, растворами

мочевины. К интегральным белкам мембраны бактерий E. coli относятся, например, цитохром b, железосерные белки, сукцинатдегидрогеназа и др.

• поддержание внутреннего постоянства цитоплазмы клетки. Она проницаема для воды и низкомолекулярных веществ, но не проницаема для ионизированных соединений.

• функция транспорта веществ в клетку и вывод их наружу;

• электронтранспортная цепь и ферменты окислительного фосфорилирования;

• цитоплазматическая мембрана связана с синтезом клеточной стенки и капсулы за счет наличия в ней специфических переносчиков для образующих их молекул;

• в цитоплазматической мембране закреплены жгутики. Энергетическое обеспечение работы жгутиков связано с цитоплазматической мембраной.

У прокариот, принадлежащих к разным таксономическим группам, обнаружены мезосомы, которые образуются при впячивании цитоплазматической мембраны в цитоплазму. Выделяют три основных ти-

па мезосом: ламеллярные (пластинчатые), везикулярные (имеющие форму пузырьков) и тубулярные (трубчатые).

В клетках некоторых бактерий обнаруживаются также мезосомы смешанного типа. Сложно организованные и хорошо развитые мезосомы характерны для грамположительных бактерий. У грамотрицательных бактерий они встречаются значительно реже и относительно просто организованы. По расположению в клетке различают мезосомы, образующиеся в зоне клеточного деления и формирования поперечной перегородки; мезосомы, к которым прикреплен нуклеоид; мезосомы, сформированные в результате инвагинации периферических участков цитоплазматической мембраны.

Развитая система внутрицитоплазматических мембран характерна для большинства фотосинтезирующих прокариот. Поскольку в этих мембранах локализован фотосинтетический аппарат клетки, они получили название фотосинтетических мембран. Все фотосинтетические мембраны – производные цитоплазматической мембраны, возникшие в результате ее разрастания и глубокого впячивания (инвагинации) в цитоплазму. Фотосинтетические мембраны образуют у этих бактерий хроматофоры, тилакоиды и ламеллы.

  1. Регуляция биохимической активности.

В 1930-е годы Х. Карстрем, изучив образование ряда ферментов углеводного метаболизма у бактерий, разделил их на два класса: адаптивные ферменты, которые образуются только в присутствии своего субстрата в среде, и конститутивные ферменты, образующиеся независимо от состава среды.

Одним из ферментов бактерий E. coli, отнесенных к классу адаптивных, является а-галактозидаза. Этот фермент катализирует реакцию гидролиза своего естественного субстрата лактозы. Феномен адап-

тации в «индукцию ферментов», а вещества, в присутствии которых в клетках образовывались соответствующие ферменты, были названы индукторами. Ферменты, синтезируемые в присутст-

вии индукторов, получили название индуцибельных. Следовательно, в настоящее время различают конститутивные и индуцибельные ферменты. Существуют два способа регуляции метаболизма:

1) на уровне активности ферментов или регуляция активности ферментов;

2) на уровне генов или регуляция синтеза ферментов.

Наиболее быстрым и тонким механизмом регуляции активности ферментов является регуляция, которой подвергаются аллостерические ферменты. Это белки с высокой молекулярной массой, состоящие из нескольких субъединиц одного или разного типа. Каждая субъединица содержит, как правило, каталитический центр, который связывается с субстратом, и регуляторный, или аллостерический, центр. Последний соединяется с веществами-эффекторами, которые могут повышать или понижать активность фермента. Связывание эффектора с аллостерическим

центром вызывает конформационные изменения молекулы фермента, происходящие на уровне третичной структуры, в результате чего изменяется сродство фермента к субстрату.

Эффекторами могут быть конечные продукты данного метаболического пути, субстраты ферментов, а также некоторые конечные продукты родственных метаболических путей. Если действие эффектора приводит

к понижению каталитической активности фермента, такой эффектор называется отрицательным или ингибитором. Положительным называют эффектор, действие которого повышает каталитическую активность фермента. Положительным эффектором, или активатором, чаще всего бывает субстрат данного регуляторного фермента. Наиболее простой случай аллостерической регуляции – регуляция конечным продуктом активности первого (ключевого) фермента неразветвленного биосинтетического пути. Если конечный продукт накапливается в избытке, он подавляет активность первого фермента. Этот процесс называется ретроингибированием или ингибированием по принципу обратной связи. Примером такого типа регулирования является ингибирование биосинтеза изолейцина.

В разветвленных метаболических путях активность аллостерических ферментов регулируется сложнее, так как от активности первого фермента зависит биосинтез нескольких конечных продуктов.

Ингибирование активности этого фермента может происходить двояко:

• мультивалентное ингибирование – необходимо связывание с аллостерическими центрами всех конечных продуктов;

• кумулятивное, или аддитивное, ингибирование – присоединение к ферменту одного конечного продукта частично снижает его актив-ность, с присоединением каждого последующего конечного продукта эффект ингибирования нарастает:

В некоторых разветвленных биосинтетических путях ингибирование первого фермента осуществляется не конечными продуктами каждой из ветвей, а промежуточным продуктом, образующимся непосредственно перед разветвлением. Такой вид ингибирования получил название последовательного.

Существуют разветвленные метаболические пути, в которых регуляция осуществляется таким образом, что одновременно происходит и активация, и ингибирование.

  1. Культивирование анаэробных бактерий.

Степень анаэробиоза измеряется по окислительно-восстановительному (редокс, Eh) потенциалу среды. При увеличении Eh выше – 100 мВ, обусловленном присутствием растворимого кислорода, подавляется рост всех анаэробных бактерий. Для удаления кислорода и создания соответствующих условий среды можно воспользоваться следующими методами.

1. Культивирование в микроанаэростате – аппарате для выращивания микроорганизмов, в котором воздух замещен газовой смесью. Наиболее часто используемая смесь имеет следующий состав: азот с

5 % СО2 и 10 % Н2.

2. Использование химических веществ, поглощающих молекулярный кислород. щелочной раствор пирогаллола, дитионит натрия (Na2S2O4), металлическое железо, хлорид одновалентной меди. Поглотители помещают на дно химического эксикатора с притертой крышкой, а также анаэробные бактерии, засеянные в колбу, пробирку или чашку Петри. При таком способе создания анаэробных условий необходмомо учитывать поглощающую способность реактивов и объем замкнутого пространтва, в котором выращиваются бактерии.

3. Использование восстанавливающих агентов, которые добавляют в большинство сред для снижения окислительно-восстановительного потенциала среды: тиогликолат натрия, цистеин, дитиотрейтол, аскорбиновая кислота. Удаления кислорода из среды можно добиться и в результате быстрого нагревания и кипячения среды с последующим быстрым охлаждением. Если в такую среду засеять анаэробные микроорганизмы и наслоить смесь (1:1) масла и парафина, то в таких условиях будет наблюдаться рост нестрогих анаэробов.

4. Выращивание совместно с аэробными или факультативно-анаэробными бактериями. В жидкой среде с восстанавливающими агентами перед инокуляцией анаэроба проводят культивирование, на-

пример, E.coli, что приводит к удалению из среды остаточного кислорода. Перед инокуляцией анаэробов клетки E.coli убивают нагреванием. На половине чашки Петри засевают какой-либо аэробный микроорганизм, на другой – анаэроб. Края чашки заливают парафином.

Для культивирования анаэробных бактерий используют и другие методы, ограничивающие доступ воздуха к растущей культуре:

• выращивание в высоком слое среды;

• выращивание в толще плотной среды;

• культивирование в вязких средах, в которых диффузия молекулярного кислорода в жидкость уменьшается с увеличением ее вязкости;

• заливка среды с посевом высоким слоем стерильного вазелинового масла или парафина.