Шпаргалки для студентов

готовимся к сессии

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Шпаргалки по микробиологии. Часть 2 - Бактериофаги.

Индекс материала
Шпаргалки по микробиологии. Часть 2
Мембранная структура бактериальных клеток
Взаимодействие микроорганизмов с высшими растениями.
Антибиотики. Природа действия
Типы микроскопии и использование.
Способы генетического обмена у бактерий.
Хемолитотрофы
Молочнокислое брожение
Получение накопительных культур.
Оперонный принцип организации генов у бактерий.
Органоиды движения. Типы движения.
Псевдомонады
Распространение в природе. Использование человеком.
Факторы физической природы.
Бактериофаги.
Бактериальная трансдукция.
Патогены высших животных
Анаэробное дыхание
Конкуренция микроорганизмов. Бактериоцины.
Формы и взаимодействия между микрорганизмами.
Явления рестрикции и модификации.
Фототрофные бактерии. Фотосинтетический аппарат.
Типы трансдукции
Спирохеты.
Биогеохимическая деятельность микроорганизмов.
Компетентность. Получение компетентных культур.
Рикеттсии и хламидии.
Все страницы



Бактериофаги.

 

Строение бактериофагов можно рассмотреть на примере колифага Т4. Относится к сложным вирусам, он состоит из икосаэдрической головки диаметром и отростка, или хвоста. В капсиде головки находится плотно упакованная двухцепочечная линейная ДНК и фермент транскриптаза в неактивном состоянии. Отросток фага имеет сложное строение. В нем различают полый стержень, покрытый сократимым чехлом, который заканчивается базальной пластинкой с шипами и нитями. Все структуры отростка имеют белковую природу. В области базальной пластинки находится фермент – бактериофаговый лизоцим, способный разрушать муреин клеточной стенки бактерий. Здесь же имеется АТФаза, которая регенерирует энергию для сокращения чехла отростка бактериофага.

В зависимости от формы зрелых фаговых частиц различают следующие морфологические типы бактериофагов: • из икосаэдрической головки и спирального хвоста с сократимым чехлом (Т-четные колифаги); • состоящие из икосаэдрической головки и длинного гибкого несократимого отростка (колифаги Т1 и Т5); • нитчатые бактериофаги (колифаг fd); • из икосаэдрической головки с коротким несократимым отростком (колифаги Т3 и Т7, фаг Р22 бактерий Salmonella typhimurium).

Вирулентные фаги всегда лизируют зараженные ими бактерии и имеют только один путь развития – литический цикл. Умеренные фаги могут вести себя двояко: после проникновения в клетку нуклеиновая кислота фага либо вовлекается в литический цикл, либо вступает с клеткой-хозяином в своего рода симбиотические отношения, встраивается в хромосому бактериальной клетки и превращается в профаг, передаваясь всему потомству данной клетки (лизогенный путь).

Адсорбция происходит на рецепторах, имеющихся в наружной мембране бактерий E. coli. За адсорбцией следует стадия инъекции, или введения ДНК, в клетку. Бактериофаговый лизоцим разрушает клеточную стенку бактерий и с затратами энергии, регенерируемой АТФазой, происходит сокращение чехла бактериофага. При этом прокалывается цитоплазматическая мембрана, полый стержень входит в бактериальную клетку и ДНК фага впрыскивается в нее.

Инъецированная ДНК вызывает полную перестройку метаболизма клетки: прекращается синтез бактериальной ДНК, РНК и белков. ДНК бактериофага начинает транскрибироваться с помощью собственного фермента транскриптазы, который после попадания в бактериальную клетку активируется. Синтезируются сначала ранние, а затем поздние иРНК, которые поступают на рибосомы клетки-хозяина, где синтезируются ранние (ДНК-полимеразы, нуклеазы) и поздние (белки капсида и

хвостового отростка, ферменты лизоцим, АТФаза и транскриптаза) белки бактериофага. Репликация ДНК бактериофага происходит по полуконсервативному механизму и осуществляется с участием собственных ДНК-полимераз.

После синтеза поздних белков и завершения репликации ДНК наступает заключительный процесс – созревание фаговых частиц или соединение фаговой ДНК с белком оболочки и образование зрелых инфекционных фаговых частиц. Сначала образуются капсиды, наполненные внутри белками. После растворения этих внутренних белков готовые головки заполняются ДНК в определенном количестве, зависящем от типа фага, и закрываются. На завершающей стадии происходит присоединение компонентов отростка и образуются зрелые фаговые частицы, которые после лизиса клетки-хозяина под действием лизоцима бактериофага высвобождаются.

Развитие умеренных фагов (лизогения) подробно охарактеризовано

для колифага λ. Это сложный фаг, содержащий линейную двухцепочечную ДНК. На 5.-конце каждой ее цепи имеется одноцепочечная последовательность из 12 нуклеотидов – так называемые липкие концы (cos-сайты). Сразу же после проникновения фаговой ДНК в бактериальную клетку липкие концы ДНК ковалентно соединяются ДНК-лигазой клетки-хозяина и образуется кольцевая молекула.

Кольцевая молекула бактериофаговой ДНК не приступает к транскрипции, а встраивается в бактериальную хромосому. Установлено, что гены фага λ кодируют синтез четырех регуляторных белков, один из которых репрессорный белок сI (кодируется геном сI) блокирует развитие событий литического цикла, а антирепрессорный белок Cro (кодируется геном сro), наоборот, запускает их. После поступления ДНК фага в клетку выбор между литическим и лизогенным путем развития зависит от относительной скорости накопления регуляторных белков.

Встраивание ДНК фага . в бактериальную хромосому осуществляется согласно интегративной модели А. Кемпбелла. Этот процесс называется сайт-специфической рекомбинацией, так как встраивание ДНК

фага λ осуществляется в одном и том же месте (сайте) между генами gal и bio и не зависит от recA-системы бактериальной клетки. За интеграцию ДНК фага ответствен фермент – лямбда-интеграза.

Этот фермент узнает две разные последовательности: одну в хромосомной ДНК (attλ), а другую – в ДНК фага (b2), с последующим разрывом молекул ДНК и их перекрестным воссоединением.

Завершением процесса является то, что ДНК фага реплицируется с клеточной ДНК как единая структура, и все дочерние клетки при делении получают копию фаговой ДНК в составе хромосомы. Подобные клетки называются лизогенными, а ДНК фага λ в них – профагом.

Состояние лизогении, поддерживаемое благодаря постоянному образованию белка-репрессора сІ, довольно неустойчиво: в любой момент может произойти переключение на литический путь из-за проявления антирепрессорных функций белка Cro. Индукторами перехода лизогения - литический

цикл являются ультрафиолетовое излучение, митомицин С, алкилирующие агенты, для некоторых фагов также и изменение температуры.

Преобретение новых признаков, обусловленных профагом, называется фаговой или лизогенной конверсией.

Например, показано, что способность дифтерийной палочки (Corуnebacterium diphtheriae) синтезировать сильнейший дифтерийный токсин детерминируется геном tox+, а активность этого гена в свою очередь зависит от присутствия в бактериальной клетке в состоянии профага специфического фага . Известно, что бактерии Clostridium botulinum – возбудители ботулизма, синтезируют смертельный токсин только при лизогенизации их специфическими бактериофагами.

  1. Определение кол-ва клеток с помощью микроскопа.

Количеству клеток в единице объема - титр клеток (или фаговых частиц).Чтобы определить общее количество микроорганизмов в различных материалах, применяют методы прямого подсчета клеток под микроскопом (в специальных счетных камерах, в фиксированных мазках, намембранных фильтрах).

Подсчет клеток в окрашенных препаратах (метод ВиноградскогоБрида)Преимущество: фиксированные окрашенные препараты хорошо сохраняются.Техника: а) на хорошо обезжиренном предметном стекле маркером рисуют прямоугольник строго известной площади (2, 4 или 6 см2), б) на стекло в прямоугольник микропипеткой (или автоматической

пипеткой) наносят определенный объем суспензии клеток (0,01; 0,02 или 0,03 мл), в) суспензию равномерно распределяют петлей по всей площади прямоугольника, г) препарат высушивают на воздухе и фиксируют 15 мин 96 % этанолом, д) проводят окрашивание фуксином Циля 1 – 2 мин,

clip_image002е) краситель сливают, препарат промывают водой, последовательно погружая стекло в 5 – 6 стаканов с водой) и высушивают на воздухе.Количество клеток микроорганизмов подсчитывают, используя иммерсионный объектив, в квадратах окулярной сетки, которую помещают в окуляр между собирательной и глазной линзами.Для получения достоверных результатов клетки микроорганизмов рекомендуется подсчитывать не менее чем в 50 – 100 полях зрения, а общее количество подсчитанных клеток не должно быть менее 600.

М – количество кл-ок в 1 мл; А – среднее число кл-к в квадрате

окулярной сетки (поле зрения); s и S – площадь квадрата окулярной

сетки (поля зрения) и приготовленного мазка в мкм2 соответственно;

V – объем нанесенной на стекло суспензии в мл; n – разведение.

2. Подсчет клеток на мембранных фильтрах

Этот метод используют для подсчета количества микроорганизмов в жидких материалах с низкой плотностью клеток. Метод основан на концентрировании клеток на поверхности фильтра в результате

фильтрации определенного объема исследуемой пробы с окрашиванием и подсчетом в микроскопе.

С помощью мембранного фильтрования могут быть подсчитаны как жизнеспособные клетки микроорганизмов, так и определено общее количество клеток. Техника: 1. Собирают прибор для фильтрования под вакуумом. Дляэтого основание стерильного фильтродержателя вставляют в стериль-

ную колбу Бунзена, с помощью стерильного пинцета помещают в фильтродержатель стерильный фильтр и закрепляют зажимом. Отводной конец колбы Бунзена соединяют с вакуумным насосом.

2. Строго определенный объем исследуемого материала пропускают через мембранный фильтр, создавая с помощью насоса вакуум. 3. Фильтр, с осевшими клетками микроорганизмов, снимают сте-

рильным пинцетом и исследую в зависимости от целей эксперимента.

Проводят окрашивание фильтра 5 % раствором эритрозина в 5 % растворе фенола. Для этого фильтр помещают нижней стороной в чашкуПетри на фильтровальную бумагу, насыщенную красителем, чашкузакрывают и оставляют на 30 – 60 мин. Фильтр отмывают от красителя, последовательно перенося его в чашки Петри с фильтровальной бумагой, насыщенной дистиллированной водой до тех пор, пока он не перестанет окрашивать влажную фильтровальную бумагу. Фильтр высушивают на воздухе и готовят препарат для микроскопирования. На предметное стекло накапывают иммерсион-

ное масло и помещают на него окрашенный мембранный фильтр таким образом, чтобы клетки микроорганизмов были сверху. На поверхность фильтра наносят еще каплю иммерсионного масла и по-

clip_image004крывают фильтр покровным стеклом.где М – количество клеток в 1 мл; а – среднее число клеток в квадрате окулярной сетки (поле зрения); s и F – площадь квадрата окулярнойсетки (поля зрения) и мембранного фильтра в мм2, соответственно;V – объем профильтрованной суспензии в мл; 106 – коэффициент пе-ревода мм2 в мкм2.

При подсчете колоний для увеличения контрастности мембранный фильтр с колониями окрашивают. Для этого поверхность фильтра, находящегося в чашке Петри, заливают 0,01 % водным раствором окса-

лата малахитового, который через 8 – 10 с сливают. При этом способе окрашивания колонии выглядят белыми или желтыми на фоне зеленого фильтра.

Метод подсчета клеток на мембранных фильтрах с помощью люминесцентного микроскопа заключается в концентрировании бактерий из исследуемого материала на нелюминесцирующий мембранный фильтр, флюорохромировании акридиновым оранжевым и подсчете клеток в специальном (люминесцентном) микроскопе. Этот метод удобен тем, что позволяет непосредственно подсчитать как общее количество клеток, так и количество жизнеспособных клеток. При окрашивании акридиновыми красителями жизнеспособные клетки имеют зеленую, а нежизнесобные (мертвые) – красную окраску.