Шпаргалки для студентов

готовимся к сессии

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Шпаргалки по микробиологии. Часть 2 - Молочнокислое брожение

Индекс материала
Шпаргалки по микробиологии. Часть 2
Мембранная структура бактериальных клеток
Взаимодействие микроорганизмов с высшими растениями.
Антибиотики. Природа действия
Типы микроскопии и использование.
Способы генетического обмена у бактерий.
Хемолитотрофы
Молочнокислое брожение
Получение накопительных культур.
Оперонный принцип организации генов у бактерий.
Органоиды движения. Типы движения.
Псевдомонады
Распространение в природе. Использование человеком.
Факторы физической природы.
Бактериофаги.
Бактериальная трансдукция.
Патогены высших животных
Анаэробное дыхание
Конкуренция микроорганизмов. Бактериоцины.
Формы и взаимодействия между микрорганизмами.
Явления рестрикции и модификации.
Фототрофные бактерии. Фотосинтетический аппарат.
Типы трансдукции
Спирохеты.
Биогеохимическая деятельность микроорганизмов.
Компетентность. Получение компетентных культур.
Рикеттсии и хламидии.
Все страницы




Молочнокислое брожение. Представители.

 

Гетероферментативное молочнокислое брожение приводит к образованию разнообразных продуктов: молочной и уксусной кислот, этилового спирта, углекислого газа и глицерина. При этом типе брожения расщепление углеводов происходит по пентозофосфатному пути. Конечными акцепторами водорода являются ПВК и ацетальдегид. Возбудителями гетероферментативного молочнокислого броже-

ния являются бактерии видов Leuconostoc mesenteroides, Bifidobacterium bifidum, Lactobacillus brevis.

При гомоферментативном молочнокислом брожении синтезируется практически одна молочная кислота (90 % всех продуктов брожения). Катаболизм глюкозы в этом случае происходит по гликолитическому пути. Образ-яся при ПВК не подвергается декарбоксилированию, а под действием лактатдегидрогеназы восстанавливается до молочной к=ты. Конечным акцептором водорода выступает ПВК.

С6Н12О6 + 2АДФ + 2Фн = 2СН3 – СНОН – СООН + 2АТФ. Возбудителями гомоферментативного молочнокислого брожения являются, например, бактерии Streptococcus cremoris, S. lactis, Lactobacillus

bulgaricus, L. lactis и др.

Бактерии рода Sporolactobacillus – микроаэрофилы. Клетки палочковидные, подвижные, грамположительные. Метаболизм бродильный, осуществляют гомоферментативное молочнокислое сбраживание гексоз с образованием молочной кислоты. Клетки не содержат каталазы и цитохромов. Типовой (и единственный) вид Sporolactobacillus inulinus.

  1. Репарация повреждений ДНК.

Явление репарации (восстановления) жизнеспособности клеток после действия на них рентгеновых лучей было открыто в 1949 г. в опытах на дрожжах, а затем и на бактериях.

Если бактериальные клетки облучить УФ-светом, то они в основном гибнут, так как УФ-лучи поглощаются ДНК с образованием в ней димеров тимина, что приводит к частичному или полному блокированию репликации. Тем не менее выявлены три основных механизма репарации ДНК после повреждений такого типа: фотореактивация, эксцизионная репарация и пострепликационная, или рекомбинационная репарация.

Фотореактивация – восстановление молекул ДНК, поврежденных УФ-лучами, в результате последующего воздействия на них видимого света. Бактериальные клетки содержат фермент фотореактивации – дезоксипиридинфотолиазу, синтез которого у бактерий E. coli детермини-

руется геном phr. Субстратом для этого фермента служат димеры тимина. Фермент находит в ДНК образовавшийся под действием УФ-лучей пиримидиновый димер и прочно связывается с ним. Если клетки перенести на видимый свет, то комплекс фермента фотореактивации и димеров тимина распадается, при этом происходит восстановление нормальной структуры ДНК.

Системы эксцизионной репарации удаляют неправильно спаренные или поврежденные основания из ДНК и затем синтезируют новую последовательность ДНК, замещающую их.

На первом этапе узнавания поврежденная структура распознается эндонуклеазой, которая разрезает

цепь ДНК на расстоянии восьми фосфодиэфирных связей с 5.-стороны и четырех-пяти связей с 3.-стороны от повреждения. На стадии вырезания 5.–3.-экзонуклеаза удаляет поврежденный участок. Образующийся одноцепочечный участок служит в качестве матрицы для ДНК-полимеразы I при синтезе цепи, замещающей вырезанную последовательность. Наконец, ДНК-лигаза ковалентно связывает 3.-конец нового материала со старым материалом.

Системы эксцизионной репарации включают у бактерий E. coli три гена: uvrA, uvrB, uvrC. Эти гены кодируют компоненты репарационной эндонуклеазы (uvrABC-эндонуклеазы).

Если повреждение в ДНК представляет собой структурное изменение (например, образование в результате УФ-облучения димера тимина), то поврежденные основания в процессе эксцизионной репарации удаляются, что ведет к восстановлению последовательности нуклеотидов, характерной для ДНК дикого типа. Однако если нарушение заключается в неправильном спаривании оснований, возникающем в результате мутирования одного из них, репарирующая система не может определить, какое именно основание представляет дикий тип, а какое – мутантный. Все это узнается как два неправильно спаренных основания, каждое из которых может служить объектом для эксцизионной репарации. Если вырезается мутантное основание, то восстанавливается дикий тип последовательности. Если же случается, что вырезается исходное основание (дикого типа), то новая (мутантная) последовательность закрепляется.

П. Говард-Фландерс (1968), этот механизм заключается не в исправлении повреждения в облученной ДНК, а в исправлении дефектной дочерней ДНК, образующейся после репликации поврежденной родительской ДНК. В результате репликации поврежденной нити ДНК образуется ДНК-копия с однонитевыми пробелами или брешами напротив димера тимина в родительской матричной цепи ДНК.

Бреши в дочерних нитях заполняются за счет пострепликационной репарации..

При репликации дефектной (поврежденной) ДНК фермент ДНК-полимераза останавливается перед димером тимина, а затем «перескакивает» через этот димер и продолжает репликацию, оставив за собой пробел (брешь) в дочерней цепи. Этот пробел заполняется в результате рекомбинации со второй дочерней молекулой ДНК, образующейся при репликации. Обмен цепями между молекулами ДНК осуществляет белок RecA. Возникающий пробел на второй молекуле заполняется ДНК-полимеразой, считывающей комплементарную нить с матричной неповрежденной нити. Лигаза окончательно восстанавливает непрерывность цепи.

Многие воздействия, которые повреждают ДНК или ингибируют ее репликацию у бактерий E. coli, индуцируют серию фенотипических изменений, получивших название SOS-ответа. Начало такого ответа определяется взаимодействием белка RecA с белком репрессором LexA. Ответ клетки на повреждающее воздействие начинается с активации протеазной активности белка RecA. Активирующим сигналом может быть присутствие одноцепочечной области в сайте повреждения. Активируясь, RecA-протеаза разрезает белок-репрессор LexA. Протеолитическое разрезание репрессора координированно индуцирует все эти опероны. Это пять генов din (от англ. damage inducible), гены recA, lexA, uvrA, uvrB, umuC и himA. Некоторые из sos-генов актив- ны только в поврежденных клетках; другие активны в необработанных, но уровень их экспрессии увеличивается при разрезании белка LexA. Установлено, что белок LexA репрессирует гены-мишени, связываясь с последовательностью ДНК длиной около 20 пар оснований, названной SOS-блоком.

Белки RecA и LexA являются взаимными мишенями в SOS-цикле. RecA разрезает LexA, который в свою очередь репрессирует RecA. SOS-ответ вызывает амплификацию обоих белков.