Шпаргалки для студентов

готовимся к сессии

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Ответы к экзамену по экологическому мониторингу. Часть 2

Печать
Индекс материала
Ответы к экзамену по экологическому мониторингу. Часть 2
Физико-химические методы в контроле загрязнения окружающей среды
Экологическое нормирование. Критерии оценки качества окружающей природной среды
Оценка качества воздушной среды
pH-метрия, водородный показатель, понятие рН
Стеклянный электрод
Электрохимические методы анализа
Вольтамперометрия
Потенциометрические методы анализа
Потенциометрическое титрование
Газовый анализ. Виды газового анализа
Микроскопия. Методы микроскопии.
Оптическая микроскопия
Электронная микроскопия
Рентгеновская микроскопия
Трансмиссионная микроскопия
Растровая (сканирующая) микроскопия.
Сканирующая микроскопия.
Физические методы в мониторинге
Аппаратура для рентгеноспектрального анализа
Использование методов хроматографии в экологическом мониторинге
Детекторы
Фотоколориметрические методы анализа
Атомно-абсорбционная спектроскопия в экологическом мониторинге
Химические методы мониторинга
Глобальные и региональные прогнозы состояния природной среды
Мониторинг за состоянием окружающей среды в местах хранения (накопления) отходов
Критерии отнесения опасных отходов к классу опасности
Составление мероприятий по снижению влияния образующихся отходов на состояние окружающей среды
Глобальные и региональные прогнозы состояния природной среды
Все страницы

 

Метод пробоподготовки сухое и мокрое озоление. Преимущества и недостатки


Традиционными методами пробоподготовки являются сухая и мокрая минерализация. Сухая минерализация представляет собой нагревание пробы на воздухе до температуры 450-550С в муфельной печи. Единственным реагентом при сухом озолении является кислород воздуха, при помощи которого происходит окисление органической матрицы. Влажный материал перед озолением высушивают в сушильном шкафу или на плитке, летучие растворители удаляют выпариванием на водяной бане. Чашку с пробой помещают в муфельную печь и постепенно нагревают до нужной температуры. Если остаются черные частицы, то озоление повторяют или вводят окислительные добавки. Золу, получаемую после прокаливания, переводят в раствор с помощью кислот. При сухом озолении возможно улетучивание некоторых элементов. Иногда добавляют вещества, способствующие более эффективному и быстрому окислению и предотвращающие улетучивание некоторых компонентов пробы.

Способ мокрой минерализации основан на полном окислении органических веществ сильными окислителями при температуре 150-2000С. «Мокрые» способы не требуют высоких температур, поэтому не сопряжены с большими потерями летучих веществ; это их преимущество. Недостатки связаны с большими временными затратами и необходимостью введения большого количества реагента-окислителя, что может быть источником загрязнений пробы. Наиболее часто применяются смеси: HNO3 -H2SO4-HClO4; HNO3- HClO4; HClO4- H2SO4; HNO3-H2O2. Можно проводить окисление пероксидом водорода или перманганатом калия. Для разрушения органических веществ, остающихся после обработки смесью серной и азотной кислот, а так же одной из кислот окислителей (серной, азотной, хлорной кислотой и т.п.), добавляют пероксид водорода или перманганат калия. Иногда применяют смесь серной и хромовой кислот, перманганата калия в кислой и щелочной средах и др. При выборе реагентов необходимо принимать во внимание их чистоту, возможное образование мешающих веществ и пригодность способа минерализации для данного метода определения.

Для процессов интенсификации пробоподготовки используют автоклавное и микроволновое разложение, разложение при помощи ультразвука.

При автоклавной пробоподготовке объекты анализа подвергаются воздействию следующих факторов: высокого давления, высокого и постоянного во времени положительного окислительно-восстановительного потенциала системы, высоких температур, превышающих температуры кипения системы. Автоклавная минерализация исключает потери микроэлементов в виде нерастворимых металлоорганических соединений не только за счет сильно выраженных окислительных свойств среды, но и реакций комплексообразования в системе

Новые возможности анализа объектов биологической природы открывает способ микроволнового (МВ) разложения органических матриц в закрытых сосудах, позволяющих минерализовать пробу под давлением 10-100 атм в течение 10-20 мин минимальным количеством азотной кислоты (иногда в смеси с водой, плавиковой кислотой и пероксидом водорода). Установлено, что прямое поглощение энергии микроволнового излучения жидкостями, содержащими молекулы с отличным от нуля дипольным моментом, приводит к ускорению проходящих в растворах процессов массопереноса, диффузии, а также химических взаимодействий с участием растворителя: гидролиза, комплексообразования в растворе и на твердой поверхности, окислительно-восстановительных реакций. В случае МВ - пробоподготовки образец растворяется за счет трех факторов: температуры, давления, МВ-облучения. Разработана методика МВ-разложения пищевых продуктов (пшеница, капуста, картофель, молочные смеси, сухое молоко) с последующим определением 24 элементов в макро - и микроконцентрациях методами атомно-абсорбционного и атомно-эмиссионного спектрального анализа. МВ-разложение применяли для определения в растительных объектах Cd, Ni, Co, Cr и Pb атомно-абсорбционным методом с электротермической атомизацией.

Разработана методика кислотного разложения почв и биологических объектов при воздействии ультразвуком (УЗ) для определения ртути, свинца и других тяжелых металлов из одного раствора, применимая для серийных анализов. Показано, что ртуть, свинец, медь и цинк из проб почв, растений, лигнина и лечебных грязей полностью извлекаются в результате их обработки смесью концентрированной азотной и соляной (3:1) кислот при воздействии ультразвуком частотой 18 кГц в течение 2 минут. Разложение при помощи ультразвука позволяет повысить скорость мокрой минерализации мясопродуктов, хлебопродуктов, и молокопродуктов в 20-40 раз, комбикормов, кукурузы, мясокостной муки, отрубей пшеничных в 4-8 раз. Применение УЗ увеличило степень и экспрессность извлечения микроэлементов из образца в раствор при анализе почв и растений по сравнению с сухим и мокрым озолением в 15-40 раз. УЗ интенсификация кислотной минерализации жиров и масел, хлебопродуктов в 20-40 раз сокращает время минерализации, степень извлечения свинца, меди, кадмия повышается с 90 до 98-99%. Облучение УЗ использовали для сокращения времени дегазации вин, подвергнутых процессам шампанизации .

Действующими государственными стандартами допускается интенсификация сухой минерализации ИК-излучением, что сокращает время минерализации на 10-20%.